01169nas a2200145 4500008004100000245008500041210006900126260001000195520065500205653006700860100002100927700001900948700002000967856003600987 2014 en d00aSecond Order Asymptotic Development for the Anisotropic Cahn-Hilliard Functional0 aSecond Order Asymptotic Development for the Anisotropic CahnHill bSISSA3 aThe asymptotic behavior of an anisotropic Cahn-Hilliard functional with prescribed mass and Dirichlet boundary condition is studied when the parameter $\varepsilon$ that determines the width of the transition layers tends to zero. The double-well potential is assumed to be even and equal to $|s-1|^\beta$ near $s=1$, with $1<\beta<2$. The first order term in the asymptotic development by $\Gamma$-convergence is well-known, and is related to a suitable anisotropic perimeter of the interface. Here it is shown that, under these assumptions, the second order term is zero, which gives an estimate on the rate of convergence of the minimum values.10aGamma-convergence, Cahn-Hilliard functional, phase transitions1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/739001048nas a2200145 4500008004100000245010400041210006900145260001300214520050500227653007400732100002100806700001900827700002000846856003600866 2013 en d00aAnalytical validation of a continuum model for epitaxial growth with elasticity on vicinal surfaces0 aAnalytical validation of a continuum model for epitaxial growth bSpringer3 aIn this paper it is shown existence of weak solutions of a variational inequality derived from the continuum model introduced by Xiang [7, formula (3.62)] (see also the work of Xiang and E [8] and Xu and Xiang [9]) to describe the self-organization of terraces and steps driven by misfit elasticity between a film and a substrate in heteroepitaxial
growth. This model is obtained as a continuum limit of discrete theories of Duport, Politi, and Villain [3] and Tersoff, Phang, Zhang, and Lagally[6].10asingular nonlinear parabolic equations, Hilbert transform, thin films1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/724501135nas a2200145 4500008004300000245008100043210006900124260002300193520065600216100002100872700002100893700001900914700002000933856003600953 2011 en_Ud 00aSingular perturbation models in phase transitions for second order materials0 aSingular perturbation models in phase transitions for second ord bIndiana University3 aA variational model proposed in the physics literature to describe the onset of pattern formation in two-component bilayer membranes and amphiphilic monolayers leads to the analysis of a Ginzburg-Landau type energy with a negative term depending on the first derivative of the phase function. Scaling arguments motivate the study of the family of second order singular perturbed energies Fe having a negative term depending on the first derivative of the phase function. Here, the asymptotic behavior of {Fe} is studied using G-convergence techniques. In particular, compactness results and an integral representation of the limit energy are obtained.1 aChermisi, Milena1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/385800773nas a2200145 4500008004300000245007900043210006900122260001300191520030200204100001900506700002000525700002100545700002500566856003600591 2010 en_Ud 00aExact reconstruction of damaged color images using a total variation model0 aExact reconstruction of damaged color images using a total varia bElsevier3 aIn this paper the reconstruction of damaged piecewice constant color images is studied using a RGB total variation based model for colorization/inpainting. In particular, it is shown that when color is known in a uniformly distributed region, then reconstruction is possible with maximal fidelity.1 aFonseca, Irene1 aLeoni, Giovanni1 aMaggi, Francesco1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/403900409nas a2200109 4500008004300000245009100043210006900134100002100203700001900224700002000243856003600263 2010 en_Ud 00aNonlocal character of the reduced theory of thin films with higher order perturbations0 aNonlocal character of the reduced theory of thin films with high1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/375400927nas a2200133 4500008004300000245007300043210006900116520048700185100002100672700001900693700002000712700002500732856003600757 2009 en_Ud 00aA higher order model for image restoration: the one dimensional case0 ahigher order model for image restoration the one dimensional cas3 aThe higher order total variation-based model for image restoration proposed by Chan, Marquina, and Mulet in [6] is analyzed in one dimension. A suitable functional framework in which the minimization problem is well posed is being proposed and it is proved analytically that the\\nhigher order regularizing term prevents the occurrence of the staircase effect. The generalized version of the model considered here includes, as particular cases, some curvature dependent functionals.1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/317401323nas a2200133 4500008004300000245010700043210006900150520085200219100001901071700001801090700002001108700002501128856003601153 2007 en_Ud 00aEquilibrium configurations of epitaxially strained crystalline films: existence and regularity results0 aEquilibrium configurations of epitaxially strained crystalline f3 aStrained epitaxial films grown on a relatively thick substrate are considered in the context of plane linear elasticity. The total free energy of the system is assumed to be the sum of the energy of the free surface of the film and the strain energy. Because of the lattice mismatch between film and substrate, flat configurations are in general energetically unfavorable and a corrugated or islanded morphology is the preferred growth mode of the strained film. After specifying the functional setup in which the existence problem can be properly framed, a study of the qualitative properties of the solutions is undertaken. New regularity results for volume-constrained local minimizers of the total free energy are established, leading, as a byproduct, to a rigorous proof of the zero-contact-angle condition between islands and wetting layers.1 aFonseca, Irene1 aFusco, Nicola1 aLeoni, Giovanni1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/235000581nas a2200109 4500008004300000245009300043210006900136520018500205100002000390700002500410856003600435 2007 en_Ud 00aNecessary and sufficient conditions for the chainrule in W1,1loc(RN;Rd) and BVloc(RN;Rd)0 aNecessary and sufficient conditions for the chainrule in W11locR3 aIn this paper we prove necessary and sufficient conditions for the validity of the classical chain rule in Sobolev spaces and in the space of functions of bounded variation.

1 aLeoni, Giovanni1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/203701010nas a2200145 4500008004300000245005800043210005800101260001300159520057100172100002100743700001900764700002000783700002500803856003600828 2004 en_Ud 00aHigher order quasiconvexity reduces to quasiconvexity0 aHigher order quasiconvexity reduces to quasiconvexity bSpringer3 aIn this paper it is shown that higher order quasiconvex functions suitable in the variational treatment of problems involving second derivatives may be extended to the space of all matrices as classical quasiconvex functions. Precisely, it is proved that a smooth strictly 2-quasiconvex function with p-growth at infinity, p>1, is the restriction to symmetric matrices of a 1-quasiconvex function with the same growth. As a consequence, lower semicontinuity results for second-order variational problems are deduced as corollaries of well-known first order theorems.1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/2911